Efeitos da economia argentina na economia do Rio Grande do Sul sob o abrigo do Mercosul: estudo empírico de criação e desvio de comércio*

Castelar Braz Garcia

Professor Adjunto da Universidade Católica de Pelotas

Jabr H. D. Haj-Omar

Professor Titular da Universidade Católica de Pelotas e Universidade Federal de Pelotas

Maria Del Carmen E. Ródenas

Professora Adjunta da Universidade de San Pablo-CEU, Madrid-Espanha

Resumo

Este trabalho de investigação tem a finalidade de analisar, nas formas empíricas "ex-post" e estática, os efeitos da economia argentina sobre a economia do RS em termos de bem-estar aos agentes econômicos residentes na região, considerando a criação e o desvio de comércio. É utilizado o modelo de simulação denominado Trade Policy Simulation Model (TPSM) para o período compreendido entre janeiro de 1995 e junho de 2004. O estudo é limitado para a Argentina, porque, além de ser o principal sócio do Brasil no Mercosul, é o segundo país em importância nas exportações para o Rio Grande do Sul, o qual tem apresentado, historicamente, uma estreita relação de comércio dentro do bloco. Os resultados obtidos apontam que a criação de comércio superou o desvio de comércio, o que implica melhoria do bem-estar dos agentes econômicos do Rio Grande do Sul. Desse modo, o intercâmbio comercial entre o Rio Grande do Sul e a Argentina, sob a formação da União Aduaneira, favoreceu a Argentina.

Palavras-chave: integração econômica; criação de comércio; desvio de comércio.

Abstract

This investigation work has the purpose of analyzing empirically in static and "ex-post" form, the effects of Mercosul on the economy of RS, in terms of the welfare of economic agents in the region through the estimation of Trade Diversion and Trade Creation effects by using a Trade Policy Simulation Model — TPSM, for the period of January of 1995 to June of 2004. The study is limited to Argentina because, besides being Brazil's

^{*} Artigo recebido em 07 jul. 2006.

main partner in the Mercosul, it is the second country in importance for the exports of the state of Rio Grande do Sul. The obtained results show that under the Customs Union, the process of Trade Creation out weighted the Trade Diversion one, which implies improvement of the well being of the economic agents in the RS. In this regard, the trade flows between RS and Argentina, favored the later.

Introdução

O Mercado Comum do Sul (Mercosul) foi criado em 1991, pelo Tratado de Assunção. Desse ano até 1994, as relações comerciais entre os sócios funcionavam através da Área de Livre Comércio, primeiro estágio de integração. A partir de 1995, com a formalização da Tarifa Externa Comum (TEC), o relacionamento comercial evoluiu para a União Aduaneira, que se mantém até hoje.

O processo da integração econômica envolve um país com os demais componentes de um bloco comercial. No entanto, as regiões que possuem limites de fronteira com seus sócios comerciais são as que, de uma forma imediata, mais sentem os efeitos de um mercado ampliado. Sendo a proximidade uma das variáveis importantes para a consolidação de um processo de integração, cabe lembrar que o Estado do Rio Grande do Sul (RS) tem 19 municípios limítrofes com a Argentina e 12 com o Uruguai, destacando-se que os Municípios de Uruguaiana e Barra do Quaraí, simultaneamente, têm fronteira com o Uruguai e a Argentina.

Desde a criação do bloco comercial, o do Rio Grande do Sul tem experimentado um crescente intercâmbio de comércio com os demais países integrantes e sócios do Mercosul. No período 1991-04, a economia do Estado apresentou déficit em sua balança comercial com os países da União Aduaneira, principalmente com a Argentina. Os dados publicados pelo Ministério do Desenvolvimento, Indústria e Comércio (MDIC) mostram que as exportações do RS para o Mercosul alcançaram cerca de US\$ 11 bilhões, sendo que 63% foram destinadas ao mercado argentino. Por outro lado, as importações do Rio Grande do sul provenientes do bloco foram em torno de US\$ 16 bilhões, sendo que 78% da Argentina.

Assim, avaliar os custos e os benefícios do fluxo de comércio entre o Rio Grande do Sul e a Argentina torna-se da maior importância para a tomada de decisões tanto no setor privado como para os formuladores das políticas econômicas estadual e nacional.

Verificou-se que todos os estudos realizados, até a presente data, por investigadores e instituições econômicas do Brasil se limitaram a avaliar o impacto do Mercosul com relação às economias brasileira e argenti-

na como agregadas e nunca considerando uma ou várias regiões específicas do Brasil, como é o caso do Rio Grande do Sul, que, por aproximação, limites de fronteira, semelhança em suas economias e aspectos culturais, apresenta mudanças no comportamento dos agentes econômicos inseridos na região, assim como significativas repercussões no âmbito da competitividade entre as empresas.

Por essas razões, um estudo desagregado de uma parte da economia brasileira, como é o caso específico do Rio Grande do Sul, proporcionará maior eficácia aos resultados, maior concentração em um número reduzido de setores econômicos — delimitação do universo — e maior profundidade e exaustiva investigação, além de estudar igualmente os setores de maior significância econômica nas pautas de importações e exportações do comércio internacional dessa unidade federativa brasileira. Uma hipótese importante a ser testada nesta investigação é que o intercâmbio comercial entre o Rio Grande do Sul e a Argentina, sob a formação da União Aduaneira, somente favoreceu à Argentina.

1 Referencial teórico

As implicações econômicas de formação de projetos regionais podem ser julgadas em relação a seus resultados em termos de aumento ou diminuição do bem--estar para as zonas integradas e para a economia mundial. Segundo a teoria da integração econômica, os clássicos efeitos de integração são "estáticos" e "dinâmicos" (Balassa, 1963; Jovanovich, 1998). Os efeitos estáticos são de dois tipos: a criação de comércio, que se refere à substituição da produção interna cara por importações mais baratas de um sócio na zona integrada, e o desvio de comércio, que é a substituição das importações iniciais mais baratas do resto do mundo por importações mais caras de um sócio. A primeira é considerada benéfica, porque não afeta o mundo exterior, aumentando, portanto, o bem-estar, enquanto a segunda tem o efeito oposto. Os chamados efeitos dinâmicos referem-se aos numerosos meios pelos quais a integração econômica pode influenciar a taxa de crescimento do PIB dos países participantes como resultado da ampliação do mercado. Esses meios estão relacionados à economia de escala e às economias externas que dependem da estrutura produtiva da zona integrante e dos graus de complementaridade e competitividade de suas economias; à distância geográfica e econômica; e ao nível tarifário inicial, antes do estabelecimento do projeto regional.

Tem sido motivo de críticas e contradições a criação de acordos regionais, ao considerar-se a ocorrência de desvio de comércio, o qual diminui o bem-estar de uma comunidade. No entanto, a literatura igualmente aponta como efeito positivo desses acordos a figura de criação de comércio, que tem resultado contrário ao desvio de comércio, ou seja, aumento do bem-estar da comunidade.

Seguindo, mais uma vez, o que indica a literatura a respeito de união aduaneira, o efeito líquido sobre o bem-estar é que deve ser considerado como importante, ou seja, a diferença entre o ganho de bem-estar produzido pela criação de comércio e a perda do bem-estar causada pelo desvio de comércio (El-Agraa, 1994, p. 83-105).

De acordo com Nonnemberg e Mendonça (1999), se, no plano teórico, é realmente simples conceituar criação de comércio e desvio de comércio, empiricamente sua estimação está longe de ser trivial. Isto porque o aumento da participação das trocas intra-regionais pode ser provocado por ganhos efetivos de competitividade dos sócios do bloco, não vinculados a alterações da estrutura tarifária, o que não pode, então, ser classificado como desvio de comércio. O contrário, redução na participação, pode gerar um aumento da demanda externa de um certo produto, provocada, por exemplo, por queda de competitividade da produção doméstica, em decorrência de alterações na taxa de câmbio.

Dessa maneira, o cálculo deve considerar modificações nos fluxos relacionados com as alterações das tarifas. Como solução, dever-se-iam construir modelos de equilíbrio geral ou mesmo parcial que captassem as modificações no comércio e em outras variáveis econômicas decorrentes, dentre outros fatores, da política comercial.

Como destacado em Chaves Neto (1999), Marques (1994, p. 13) expõe que a mensuração direta de criação e desvio de comércio pode ser de duas formas temporais distintas: *ex-ante* e *ex-post*. Na primeira, está-se lidando com um bloco já constituído e deseja-se aumentá-lo. O problema consiste em calcular a hipotética situação após a integração. O estudo *ex-post* trata de analisar dados de uma integração já existente há algum tempo.

Os economistas discordam sobre os efeitos de bemestar desses projetos na economia mundial. Summers (1991) e Serra (1997) argumentam que, tanto da perspectiva estática como da dinâmica, esses projetos provavelmente aumentam a eficiência mundial, porque seus efeitos criadores de mercado são passíveis de exceder seus efeitos diversificadores de mercado. Além disso, fora seu impacto sobre o mercado, eles podem ter outros efeitos benéficos entre os países que o integram, melhorando as políticas internas, construindo instituições e acelerando o processo de liberalização. Por outro lado, Bhagwati (1999) descreve o regionalismo como difícil e delicado:

Apenas o tempo dirá se o renascimento do regionalismo desde os anos 80 terá sido um desenvolvimento confiante e benigno ou uma força maligna que servirá para minar o objetivo amplamente compartilhado de mercado livre multilateral para todos. Minha opinião é que o renascimento do regionalismo é infeliz. Mas, dados seu apelo político e sua provável expansão, creio que é importante contê-lo e modelá-lo nas maneiras esboçadas aqui, a fim de que se torne útil ao máximo e minimamente danoso e consoante com os objetivos de alcançar o mercado livre multilateral para todos (Bhagwati, 1999, p. 27-28).

2 Metodologia

A análise compreende uma série histórica bimensal para o período jan./95-jun./04, totalizando 57 bimestres. Foram estudados 56 capítulos de produtos. Os grupos de produtos da economia do Rio Grande do Sul investigados são os descritos na **Nomenclatura Comum do Mercosul** e que não tiveram descontinuidade de importação com a Argentina. Esses grupos de produtos têm uma importante significância numérica na balança comercial do Rio Grande do Sul com a Argentina, representando 45% do total das importações desse país. Os dados foram obtidos junto ao Instituto de Pesquisa Econômica Aplicada (IPEA) e ao MDIC.

O modelo utilizado nesta investigação é uma reprodução da metodologia empregada em diversos estudos com a intenção de mensurar ganhos de criação de comércio e desvio de comércio em decorrência de mudanças na política tarifária. Como exemplo, têm-se: Sapir e Baldwin (1983), Cline et al. (1978), Laird e Yeats (1997), Cline (1981) e Marques (1994). As duas primeiras investigações mensuraram os ganhos decorrentes da Rodada Multilateral de Liberalização de Comércio intitulada Tokio Round. Laird e Yeats (1997) fizeram referência ao modelo como The UNCTAD Trade Policy Simulation Model (TPSM), onde discutiram os seus aspectos metodoló-

gicos. Cline (1981) utilizou-o para estimar os ganhos de uma possível integração na América Latina; Marques (1994) fez um estudo teórico e projeções dos efeitos potenciais sobre o fluxo de comércio bilateral entre o Brasil e a Argentina. Os principais cálculos desse modelo relacionam os efeitos diretos sobre o comércio em termos de criação e desvio do mesmo, além de simular políticas de liberalização comercial, com destaque para as economias em desenvolvimento. O referido modelo possui algumas particularidades próprias, como modelo de equilíbrio parcial, medindo os primeiros efeitos simulados de mudanças na política econômica.

Um cálculo importante na simulação é a descrição direta dos efeitos do comércio já mencionados, como criação e desvio de comércio. Tais efeitos devem ser somados, para obter-se o efeito líquido da liberalização comercial, bem como o efeito bem-estar, em cada mercado e em cada país-sócio, com a intenção de avaliar possíveis perdas, ou não, com a preferência de comércio.

Neste trabalho, o efeito bem-estar será medido, por simulação, para cada capítulo de produtos e específico para as importações da Argentina. Uma limitação importante e que merece ser destacada com o crescimento das importações é que o modelo TPSM não identifica a existência de outras medidas, como, por exemplo, o crescimento dessas em virtude da eliminação de barreiras não tarifárias ou também pelo sistema global de preferência. Por outro lado, o modelo permite calcular os efeitos preço, renda e bem-estar de uma liberalização comercial.

Como modelo de equilíbrio parcial, ele é vulnerável a críticas, por não levar em conta os efeitos de grandes mudanças na economia, embora possa ser estendido para aproximar os resultados dos efeitos interindústrias e a manutenção do equilíbrio na balança comercial.

Ainda que a aproximação de um modelo de equilíbrio parcial possua inúmeros obstáculos no seu emprego, como uma modelagem aproximada, tem a vantagem de trabalhar em um excelente nível de detalhes, como, por exemplo, considerar com precisão a identificação de produtos, grupos (capítulos) de produtos-chave, ou todos eles, e, também, os sócios comerciais afetados por políticas de comércio.

Nesta investigação, o detalhamento da análise para as importações é por capítulos de produtos, sob a **Nomenclatura Comum do Mercosul**, procurando-se, dessa maneira, reduzir em grande parte o viés de agregação, fato este comum nos modelos de equilíbrio total. Quanto às elasticidades, estas podem ser fixadas previamente ou posteriormente.

Uma observação importante é que os resultados obtidos não devem ser tomados como uma avaliação precisa dos efeitos de mudanças na política comercial, mas, sim, como uma indicação das magnitudes dos possíveis efeitos, dada a estrutura existente e, seguramente, as suas suposições básicas. Sob essas condições, o software possibilita mudança nos parâmetros básicos e, igualmente, testar a margem de erros desses parâmetros.

Em muitos trabalhos realizados pela United Nations Conference on Trade and Development (UNCTAD), uma variedade de informações sobre tipos de tarifas foram usadas. O detalhe dessas informações depende da classificação de tais tarifas e do número de sócios comerciais. Neste trabalho, o modelo utilizado para a medição tanto da criação como do desvio de comércio é aquele desenvolvido por Laird e Yates, em 1997, e denominado Trade Policy Simulation Model.

2.1 Descrição e estimação do modelo para mensuração de criação de comércio

A especificação do modelo utilizado para medir a criação de comércio é dada por:

$$C.C. = M_{ijk} * E_{mi} * \frac{\left[NT_{ijk} - VT_{ijk}\right]}{\left(1 + VT_{ijk}\right)}$$

$$\tag{1}$$

sendo

 M_{ijk} o total das importações i do RS, procedentes da Argentina (país j), do capítulo k;

 Em_{ijk} a elasticidade-preço de importação i do RS, procedentes da Argentina (país j), do capítulo k;

 NT_{ijk} a nova tarifa aduaneira de importação do produto i no RS, procedente da Argentina (país i):

 VT_{ijk} a antiga tarifa aduaneira de importação do capítulo k no RS, procedente Argentina (país i).

As mudanças nas tarifas aduaneiras, entre os sócios comerciais, tem importante efeito sobre os preços e notadamente na medição de criação de comércio. Essa prática de desgravação aduaneira no bloco iniciou em 1991, com uma redução em etapas, culminando com tarifa zero, a partir de 1995, para quase todos os produtos comercializáveis entre os países sócios. Sob esse

aspecto, o modelo capta essa variação de maneira que, quanto maior for o diferencial, combinado com a estimação da elasticidade-preço de importação, maior será o montante de criação de comércio. Neste estudo, para o cálculo das tarifas de cada capítulo, foi utilizada a média em cada grupo de produtos. Portanto, o modelo para a mensuração de criação de comércio necessita das estimativas das elasticidades da função demanda por importações.

2.1.1 Especificação e estimação das elasticidades

Leamer e Stern (1970) recomendam que a especificação da demanda por importações, como também por exportações, deve ser adotada como variável dependente adequada à quantidade demandada por alguma classe de produto. Assim, a relação entre as variáveis seria:

$$M = V_m / p_m \tag{2}$$

onde M representa as quantidades de importações de alguma classe de mercadoria; $V_{\scriptscriptstyle m}$, o valor das importações em unidades monetárias nominais, e $p_{\scriptscriptstyle m}$, o preço da importação.

Quando os bens são de características heterogêneas, a medição de M deve ser expressa em unidades monetárias. Sendo os bens de características homogêneas, a medição de M pode ser em qualquer tipo de unidade de medida. Então, por tratar-se de uma agregação, inclusive se os produtos são agrupados por capítulos em uma pauta de importação, as quantidades passam a ser valores expressos em unidades monetárias, e a variável preço é substituída por um índice de preços. Nos estudos empíricos, em épocas de inflação alta, os valores nominais não representam a realidade: por isso, é desejável expressar a medida de importação e de exportação em valores reais, evitando-se, assim, os possíveis erros provocados pela utilização de valores brutos.

Em assim sendo, o modelo seria:

$$M = f(Y, p_{m}, p_{N})$$
 (3)

onde Y é a renda doméstica, expressa em unidades monetárias nominais; $p_{_m}$ é o índice de preços; e $p_{_y}$, o índice de preços domésticos.

Em um passo posterior e mais realista, supondo que os agentes econômicos individuais apresentam ausência de ilusão monetária, isto é, se se duplicarem todos os preços e a renda pessoal, a quantidade de-

mandada manter-se-ia inalterada, e a função de demanda por importações, que agora tem suas variáreis nominais, poderia ser reescrita por:

$$M = f(Y/p_{v}, p_{m}/p_{v})$$
 (4)

Como não se considera, nas especificações anteriores, a taxa de câmbio real e tendo em conta a importância dessa variável como regressor, o comportamento das importações, em um modelo uniequacional terá a seguinte especificação, de acordo com Blanchard (1999):

$$M = f(Y/p_{y}, TCR) = f_{I}(Y/p_{y}) + f_{2}(TCR)$$
 sendo $f_{I} > 0$ $ef_{2} < 0$ (5)

onde $Y/p_{_{y}}$ é a renda real doméstica, e TCR é a taxa de câmbio real.

Na especificação antes mencionada, a estimação da função demanda para importação e exportação deveria ser feita por um modelo de equações simultâneas. Entretanto, como o objetivo deste estudo não é estimar o equilíbrio de comércio externo, gerado pela interseção das curvas de oferta e demanda, o modelo considera que a elasticidade de oferta de exportação é infinita.

Por outro lado, como os grupos de produtos estudados estão em uma série temporal bimensal, e para evitar-se uma relação espúria, foi verificada a estacionariedade das mesmas, primeiramente através de um procedimento de inspeção gráfica e de seus correlogramas, ou seja, foi calculada a função autocorrelação (FAC) e, após o teste devido, a Waene A Fuller e D. A. Dickey, mais conhecido por teste de Dickey-Fulller ampliado, tanto para as variáveis dependentes como para as independentes. Esses pesquisadores não foram os únicos que estudaram o problema das raízes unitárias¹, entretanto é o teste mais usual, devido, possivelmente, à sua simplicidade ou à sua natureza mais geral.

Como não foi possível obter-se o PIB do Rio Grande do Sul, utilizou-se, como *proxy* do mesmo, o ICMS arrecadado mensalmente para cada período.

Portanto, com a finalidade de se obter a elasticidade de importação de cada um dos grupos de produtos analisados, foram realizadas regressões da variável que representa a informação do valor da importação para cada capítulo em logaritmos neperianos, isto é, a variável dependente Y_{ι} sobre as variáveis que representam informação do PIB $(X_{I\iota})$ e da taxa de câmbio $(X_{2\iota})$, ambas também em logaritmos neperianos.

¹ Podem-se consultar Sargan-Bhargava (1983), Durbin-Watson (CRDW test) e os estudos desenvolvidos por Phillips e Perron (1987). Ver Harris e Sollis (2003, p. 42).

No caso dos capítulos 07, 27, 29 e 41, que correspondem a séries estacionárias I(0), foi usada a regressão pelo método dos mínimos quadrados (OLS, isto é, Ordinary Least Squares), na forma:

$$\ddot{A}Y_{t} = b_{o} + b_{1t} + a_{1}\ddot{A}X_{1t} + a_{2}\ddot{A}X_{2t} + u_{t}$$
 (6)

acrescentando-se variáveis *dummies* estacionárias centradas, já que os dados levantados são bimensais. Os coeficientes b_o e b_τ representam a constante e a tendência respectivamente, e os coeficientes a_τ e a_z são as elasticidades a curto prazo, em termos econômicos, já que a variável dependente tem a primeira diferença.

Alguns capítulos, como foi o caso dos grupos 27, 29 e 41, foram desprezados, porque as regressões não foram representativas, e o p-valor da elasticidade não era significativo.

Para o resto dos capítulos de produtos de importação, a regressão, também pelo método dos mínimos quadrados, toma a seguinte forma, já que todas são variáveis, tanto a dependente como as independentes são I(I).

$$Y_{t} = b_{0} + b_{1}t + a_{1}X_{1t} + a_{2}X_{2t} + u_{t}$$
 (7)

acrescentando-se, ainda, variáveis *dummies* estacionárias centradas como no caso anterior, já que os dados seguem bimensais. Os coeficientes $b_{_{o}}$ e $b_{_{I}}$ representam a constante e a tendência respectivamente, e os coeficientes $a_{_{I}}$ e $a_{_{2}}$ são as elasticidades de longo prazo, em termos econômicos. Deve-se ter em consideração que essa regressão é adequada, se as variáveis estiverem cointegradas, e, nesse caso, pode-se expressar a regressão usando o mecanismo de correção de erros (MCE).

Na etapa seguinte, eliminam-se as variáveis não significativas e observa-se se existe autocorrelação, a qual será corrigida no final da análise, antes de se estabelecer a equação dinâmica de longo prazo. Ainda tendo em vista a forte correlação entre os regressores, em alguns casos, quando a variável correspondente à *proxy* do PIB não for significativa e seu coeficiente estimado possuir sinal negativo, o que contraria a teoria econômica, a mesma será descartada do modelo, em favor da variável taxa de câmbio real, ficando, assim, o modelo mais ajustado aos dados empíricos. Para uma melhor qualidade do ajuste, foi utilizado o coeficiente de determinação ajustado e o estatístico teste F.

Com esse procedimento, foram dispensados do estudo 17 capítulos, cujo modelo não era representativo, além de seus regressores serem não significativos.

Os 39 capítulos restantes são os que estão representados na Tabela 1, com as elasticidades de importa-

ção dos grupos de produtos com respeito ao TCR e também com respeito à proxy do PIB e seus valores de t-Student. Também se constata a existência, no modelo da constante, da tendência e/ou das variáveis estacionárias e, por último, os valores de r^2 ajustado e a estatística F, conforme exposto na Tabela 1.

Numa segunda etapa, para comprovar que as variáveis estão cointegradas em cada regressão, calculouse a série temporal correspondente aos resíduos da estimação realizada com o modelo selecionado para a regressão, caso a caso, e, a essa nova série, aplicou-se o teste de raiz unitária para verificar a estacionariedade. Destaca-se, nesse caso, que a distribuição não é o habitual teste de Dickey-Fuller, porque o mesmo poderá rejeitar uma hipótese nula, quando a mesma for falsa. Em assim sendo, calcularam-se os valores críticos² da superfície de resposta dada pela seguinte relação:

$$C(p) = \ddot{o} + \ddot{o}_{1} T^{-1} + \ddot{o}_{2} T^{-2}$$
 (8)

Levando-se em consideração o número de variáveis independentes ou regressores e os níveis de significância, alcançaram-se os valores dos coeficientes da superfície de resposta, calculados por MacKinnon em 1991, inseridos na tabela do **Apêndice Estatístico** do livro **Applied Time Series Modelling and Forecasting**, de Richard Harris e Robert Sollis (2003), para um e dois regressores (n = 1 e n = 2), conforme a Quadro A.1 do **Anexo**. Com esses dados, obtiveram-se os valores críticos da superfície de resposta em cada caso, o qual se apresenta na Quadro A.2 do **Anexo**.

Considerando que o número de dados de cada variável é de 57 bimestres e que, em cada regressão, houve algumas defasagens nas variáveis, calcularam-se os valores críticos para a superfície de resposta, obtendose como resultado que todos os resíduos são estacionários, pois se rejeitou a hipótese nula (sendo $H_0=0$, isto é, ρ - 1=0, $\rho=1$, e a alternativa $H_1<0$, isto é, ρ - 1<0, $\rho<1$, y, portanto, os resíduos são estacionários I(0)), escolhendo-se o número de defasagens, na regressão ADF, que minimiza o valor do critério de informação (AIC) de Akaike³.

A terceira etapa consiste em introduzir o Mecanismo de Correção de Erros (MCE) para as séries temporais correspondentes aos capítulos de produtos I(1), com a intenção de explicar as mudanças da variável depen-

 $^{^{\}rm 2}$ Ver os valores críticos obtidos por MacKinnon em 1991 (Harris; Sollis, 2003, p. 81).

 $^{^3}$ A fórmula desse critério é $AIC = log \ \acute{o}^2 + 2K/T$, onde \acute{o} é a variância residual estimada; T, o tamanho da amostra; e K, o número de regressores.

dente, através das alterações das variáveis independentes e de uma defasagem do resíduo antes calculado. Isto é, as equações estimadas foram:

$$\ddot{A}Y_{t} = b_{o} + a_{I}\ddot{A}_{It} + a_{2}\ddot{A}X_{2t} + a_{3}u_{t-1}$$
 (9)

O valor do coeficiente a_3 mede a sensibilidade do crescimento de u_1 (dado por $\ddot{A}Y_i$), com os desvios da

relação de longo prazo em t-1 (dado pelos resíduos u_{t-1}). O sinal do coeficiente deve ser negativo, significativo e diferente de zero, se as variáveis estiverem integradas.

Com os resultados obtidos, conclui-se que todas as regressões estimadas pelas séries temporais estão cointegradas. Os resultados encontram-se na Tabela 2.

Tabela 1

Resultado da modelagem das regressões para as importações

CAPÍTULOS	E TCR	T-TCR	E PIB	T-PIB	TEND	CONSTANTE	R^2 AJUSTADO	F	VARIÁVEIS ESTÁCIONÁRIAS
02	-4,7804	-12,800				Х	0,749	164,500	_
03	-2,6450	-4,900			Χ	X	0,925	86,840	Χ
04	-1,8230	-5,340				X	0,341	28,490	
07	-2,0160	-1,530					0,694	18,540	
08	-0,8300	-2,340			Χ	Χ	0,749	20,990	
09	-2,8590	-3,490	1,908	2,060	X	Χ	0,770	59,160	
10	-1,8350	-3,450	,	,	Χ	X X X	0,199	6,700	
12	-1,7960	-1,380			Χ		0,079	2,323	
15	-2,6500	-10,500				Χ	0,668	110,700	
19	-5,8870	-4,970			Χ	X X X	0,314	12,370	
20	-1,0250	-1,770			Χ	X	0,063	1,828	
21	-4,1760	-4,550			Χ	Χ	0,355	14,910	
22	-1,5610	-1,820	1,914	2,860		X X X	0,438	5,460	
25	-1,9190	-2,970	2,051	2,500	Χ	Χ	0,436	4,650	
28	-1,6750	-2,730	,	,	Χ	Χ	0,597	40,020	
32	-0,9110	-2,350			Χ	Χ	0,400	4,682	
38	-0,5060	-0,437			Χ	Χ	0,738	76,080	
39	-0,7000	-4,260				X X X	0,247	18,120	
40	-0,1240	-0,165	2,918	5,040			0,667	56,850	
44	-2,3780	-3,920	,	,	Χ	X X X	0,225	7,840	
48	-2,3900	-4,850	1,828	4,810		Χ	0,314	12,370	
49	-0,4780	-0,201	0,158	0,086		Χ	0,001	0,040	
51	-2,7340	-4,830	,	,		Χ	0,462	7,180	
52	1,0770	-0,994			Χ	X	0,730	76,130	
54	-0,8900	-2,460				X	0,099	6,058	
56	-0,1060	-0,200				X	0,007	0,039	
68	-2,2300	-4,040			Χ	X	0,330	13,300	
70	-3,3110	-9,410				X	0,692	18,760	
72	-2,2700	-3,190			Χ	X X X	0,456	22,640	
73	-4,0040	-6,630			Х		0,464	23,360	
74	-2,4120	-1,820	1,678	1,120	Χ	X X X	0,648	32,620	
76	-0,4000	-0,398	1,020	1,320		X	0,078	2,280	
82	-1,8300	-5,550				Χ	0,350	30,750	
83	-4,2010	-4,510	1,712	2,380		X	0,378	16,400	
84	-1,3950	-4,200	-	•	Χ	X	0,321	12,800	
85	-0,0660	-0,106	0,834	1,740			0,192	6,440	
87	-1,2020	-0,896	-	•	Χ	X	0,149	1,280	
90	-1,8270	-1,760	2,775	3,460		X X	0,272	10,120	
94	-1,7820	-3,950				X	0,220	15,570	

Tabela 2

Tabela dos resultados da cointegração e do mecanismo de correção de erros (MCE)

CAPÍTULOS	NÚMERO DE DEFASAGENS DA VARIÁVEL DEPENDENTE	t-adf	a_3 VELOCIDADE DE AJUSTE	t-VALOR	AIC RESÍDUOS
2	0	-5,499	-0,653805	-5,33	-0,7645
3	0	-5,467	-0,789052	-2,85	-1,9450
4	0	-3,650	-0,424689	-3,90	-1,3950
8	0	-5,720	-0,766772	-5,48	-2,6530
9	0	-4,630	-0,579151	-4,68	-0,9569
10	0	-8,679	-0,575545	-4,21	-2,5140
12	1	-3,346	-0,580396	-4,56	-0,2627
15	0	-3,410	-0,339254	-3,31	-2,0330
19	0	-3,319	-0.346759	-3,32	-0,6673
20	0	-4,356	-0,539015	-4,46	-1,7430
21	1	-3,686	-0,388804	-4,17	-1,3130
22	5	-3,522	-0,883825	-6,22	-1,1860
25	5 0	-4,630	-0,565805	-4,24	-1,5940
28	0	-2,856	-0,332930	-3,31	-2,1500
32	3	-3,286	-0,456083	-3,79	-3,0600
39	0	-3,193	-0,362735	-3,43	-2,8140
44	6	-4,224	-0,290373	-3,26	-2,2300
48	0	-3,861	-0,485916	-4,24	-2,0030
51	O	-5,942	-0,839972	-5,79	0,1167
54	0	-2,958	-0,319815	-3,04	-1,3670
68	1	-3,128	-0,515401	-5,69	-2,3380
70	0	-5,130	-0,671019	-4,97	-0,9794
72	0	-4,085	-0,619815	-4,75	-1,2860
73	a	-4,252	-0,494311	-4,16	-1,7980
74	2 6	-4,677	-0,619735	-4,52	-0,0144
82	6	-3,462	-0,711902	-5,11	-0,9809
83	0	-4,772	-0,63314	-5,11	-0,4304
84	0	-4,709	-0,545083	-4,59	-2,8570
90	0	-4,224	-0,513815	-4,18	-0,2937
94	0	-3,151	-0,204314	-2,57	-1,3520

2.2 Descrição e estimação do modelo para mensuração de desvio de comércio

Para mensurar o desvio de comércio, foi utilizada a fórmula

$$DC = \frac{\sum M_{ikJ} * \sum M_{ikJ} * E_{S_{J}} * \left(\frac{\frac{1 + NT_{ikJ}}{1 + NT_{ikJ}}}{\frac{1 + VT_{ikJ}}{1 + VT_{ikJ}}} - 1\right)}{\sum M_{ikJ} * \sum M_{ikJ} + \sum M_{ikJ} * \sum M_{ikJ} * E_{S_{J}} * \left(\frac{\frac{1 + NT_{ikJ}}{1 + NT_{ikJ}}}{\frac{1 + VT_{ikJ}}{1 + VT_{ikJ}}} - 1\right)}$$
(10)

sendo que:

- M_{ijk} é igual a importações i do RS, do capítulo k, procedentes de países j que pertencem ao bloco comercial;
- ∑M_{ikJ} é igual à soma das importações i do RS, do capítulo k, procedentes da Argentina (país j), que pertencem ao bloco;
- ∑M_{ikj} é igual à soma das importações i do RS, do capítulo k, procedentes de países j, que não pertencem ao bloco;
- Es é igual à elasticidade-preço de substituição que mede o grau de substituição entre produtos importados e produtos domésticos do RS;
- NT_{ikj} é igual à nova tarifa aduaneira de importação do capítulo k, para os países que pertencem ao bloco comercial;

- NT_{ikj} é igual à nova tarifa aduaneira de importação do capítulo k, para os países que não pertencem ao bloco comercial;
- VT_{ikJ} é igual à antiga tarifa aduaneira de importação do capítulo k para os países que pertencem ao bloco comercial, com a primeira desgravação e sem desgravação para os anteriormente sócios da União Aduaneira;
- VT_{ikj} é igual à antiga tarifa aduaneira de importação do capítulo k, para os países j, que não pertencem ao bloco comercial.

Embora não exista estudo publicado sobre os valores da elasticidade de substituição nos países do

Mercosul, estudos anteriores sobre produtos acabados e semi-acabados para os países europeus mostram que o valor da elasticidade de substituição ultrapassa a unidade e se encontra em torno de menos 2 (El-Agraa, 1989, p. 104 e 143).

Com a finalidade de calcular o desvio de comércio, foram utilizados três valores da elasticidade de substituição: -0,5, -1,5 e -2,5. A Tabela 3 evidencia os resultados obtidos de aplicação dos modelos de criação e desvio de comércio.

Conforme se demonstra na Tabela 3, quanto maior o valor da elasticidade de substituição, menor será o valor do desvio de comércio.

Tabela 3

Resultados da estimação dos modelos de criação e desvio de comércio

(US\$)

	CRIAÇÃO DE	DES	DESVIO DE COMÉRCIO			EFEITO LÍQUIDO		
CAPÍTULOS	COMÉRCIO	<i>E</i> = -0,5	<i>E</i> = -1,5	<i>E</i> = -2,5	E	F	G	
	(A)	(B)	(C)	(D)	(A - B)	(A - C)	(A - D)	
2	188 893 812	418 911	947 770	1 267 907	188 474 901	187 946 042	187 625 905	
3	63 874 026	1 592 733	3 607 223	4 828 688	62 281 293	60 266 803	59 045 338	
4	123 701 316	1 967 438	4 397 652	5 839 453	121 733 878	119 303 664	117 861 863	
7	126 766 340	2 686 807	6 532 161	9 151 758	124 079 533	120 234 179	117 614 582	
8	14 031 559	5 207 527	12 836 422	18 156 053	8 824 032	1 195 137	-4 124 494	
9	11 996 744	212 666	469 396	618 800	11 996 531	11 527 348	11 996 125	
10	259 322 231	25 710 908	62 763 769	88 179 448	233 611 323	196 558 462	171 142 783	
12	1 442 083	569 573	1 641 848	2 633 358	872 510	-199 765	-1 191 275	
15	36 436 618	2 847 229	6 917 202	9 686 467	33 589 389	29 519 416	26 750 151	
19	79 927 881	1 361 340	2 953 295	3 854 874	78 566 541	76 974 586	76 073 007	
20	11 482 862	4 121 073	10 027 322	14 056 398	7 361 789	1 455 540	-2 573 536	
21	128 781 270	4 050 792	8 849 567	11 597 324	124 730 478	119 931 703	117 183 946	
22	33 077 415	11 027 157	28 547 526	41 844 287	22 050 258	4 529 889	-8 766 872	
25	4 602 837	1 924 474	5 583 968	9 010 921	2 678 363	-981 131	-4 408 084	
28	69 819 754	23 289 187	63 397 388	96 706 671	46 530 567	6 422 366	-26 886 917	
32	31 823 446	14 797 588	37 259 490	53 502 134	17 025 858	-5 436 044	-21 678 688	
39	71 337 484	49 544 842	128 021 277	187 381 900	21 792 642	-56 683 793	-116 044 416	
44	77 678 148	4 319 772	10 390 311	14 452 231	73 358 376	67 287 837	63 225 917	
48	56 463 035	13 780 873	37 430 374	56 990 914	42 682 162	19 032 661	-527 879	
51	23 816 883	815 863	1 844 871	2 467 230	23 816 067	21 972 012	21 349 653	
54	16 601 952	7 630 176	19 074 620	27 248 620	8 971 776	-2 472 668	-10 646 668	
68	7 294 878	1 681 130	4 640 232	7 161 262	5 613 748	2 654 646	133 616	
70	35 187 348	4 376 403	11 409 756	16 814 205	30 810 945	23 777 592	18 373 143	
72	81 311 859	14 856 848	39 305 183	58 587 390	66 455 011	42 006 676	22 724 469	
73	42 013 786	6 561 402	18 704 079	29 694 883	35 452 384	23 309 707	12 318 903	
74	4 694 066	1 309 175	3 820 177	6 197 569	3 384 891	873 889	-1 503 503	
82	3 487 216	1 249 987	3 679 804	6 020 373	2 237 229	-192 588	-2 533 157	
83	7 513 465	1 096 856	3 166 664	5 086 256	6 416 609	4 346 801	2 427 209	
84	262 163 641	107 085 222	306 801 033	489 318 572	155 078 419	-44 637 392	-227 154 931	
90	14 731 874	4 932 039	14 552 163	23 860 207	9 799 835	179 711	-9 128 333	
94	9 614 416	2 474 845	6 697 634	10 167 291	7 139 571	2 916 782	-552 875	

3 Resultados e conclusões

O principal objetivo deste trabalho consiste em avaliar os efeitos da integração na economia do Rio Grande do Sul, tendo como país-sócio do Brasil a Argentina. O presente trabalho de pesquisa pode ser considerado como pioneiro no estudo empírico dos efeitos do Mercosul sobre a economia do Rio Grande do Sul, na forma de criação e desvio de comércio. Calcularam-se, pela primeira vez, as elasticidades da função demanda por importação para grupos de produtos de uma unidade federativa do Brasil, utilizando-se métodos quantitativos econométricos, com estudos de raízes unitárias, para estabelecer o tipo de estacionariedade das séries temporais bimensais correspondentes aos dados empíricos dos capítulos que mantinham importações contínuas no período jun./04-jan./05, totalizando 57 bimestres para cada capítulo, junto com os regressores, consideradas a taxa de câmbio real e uma proxy do PIB do Rio Grande do Sul. Além da estimação das citadas elasticidades de importação, foram selecionados os modelos mais apropriados como estudo dos resíduos e a cointegração das variáveis, aplicando-se o método de correção de erros. Em todos os estudos já realizados para a mensuração de criação e desvio de comércio até o presente, a variável elasticidade foi considerada como dada ou calculada por outros autores, obtida na função importação log-linear. Os grupos de produtos investigados têm uma importante significância numérica na balança comercial do Rio Grande do Sul com a Argentina, representando 45% do total das importações desse país.

Utilizando-se o Trade Policy Simulation Model (Laird; Yates, 1997), os resultados empíricos demonstraram que — com a implantação da Tarifa Externa Comum, condição necessária para uma união aduaneira, e a redução de tarifas entre os países-sócios em todos os casos analisados — a criação de comércio total superou o desvio de comércio total, apesar das variações adotadas para as elasticidades de substituição testadas. Foi demonstrado, também, que, no Estado do Rio Grande do Sul, à medida que os bens tendem a ser bens substitutos, o desvio de comércio aumenta, exceto para o caso do valor da elasticidade de substituição de -0,5, em que o desvio não supera a criação em nenhum grupo de produto. Para os demais casos estudados, já ocorre, em alguns capítulos, o desvio superando a criação, inclusive considerando uma redução parcial nas tarifas antes da formação da União Aduaneira. Quando a substituição assume o valor de -1,5, os capítulos de produtos que apresentam desvio de comércio são pouco menos da

quarta parte do total estudado, enquanto, para o valor da elasticidade de -2,5, os capítulos com desvio de comércio crescem para uma terça parte do total.

Em todos os casos analisados, são os bens de capital os que apresentam maior desvio de comércio, sendo o valor de desvio encontrado relativamente insignificante em relação aos demais. Com maiores valores para as elasticidades em termos absolutos, e considerando o cenário existente, o capítulo de reatores nucleares, caldeiras, máquinas e seus artefatos mecânicos, partes dessas máquinas ou acessórios é o que apresenta maior desvio de comércio.

Em face de todos os resultados analisados, podese concluir que houve um aumento de comércio com reflexos positivos no bem-estar dos agentes econômicos do Rio Grande do Sul, embora existam barreiras não tarifárias, de acordo com os interesses comerciais dos países-sócios no Mercosul, as quais impedem, muitas vezes, o pleno processo de integração.

Assim sendo, e apesar de a balança comercial entre a Argentina e o Brasil ter sido deficitária no período analisado (1995-04), os resultados empíricos obtidos no presente trabalho de investigação revelam indícios de que houve ganhos líquidos de comércio para o RS nas transações comerciais com o principal sócio do Brasil, a Argentina, não obstante as situações externas que tiveram efeito na economia do Brasil e, por extensão, no Rio Grande do Sul, inclusive pela própria instabilidade e vulnerabilidade econômica dos países do bloco, combinadas com a ausência de políticas comuns.

Anexo

Quadro A.1

Nível de significância e seus coeficientes na superfície de resposta

MODELOS	n NÍVEL DE SIGNIFICÂNCIA (%)		Ø ∞	<i>Ф</i> 1	<i>Ф</i> 2
		1	-3,9001	-10,534	-30,03
Com constante e sem tendência	2	5	-3,3377	-5,967	-8,98
		10	-3,0462	-4,069	-5,73
		1	-4,3266	-15,531	-34,03
Com constante e com tendência	2	5	-3,7809	-9,421	-15,06
		10	-3,4959	-7,203	-4,01
		1	-3,4336	-5,999	-29,25
Com constante e sem tendência	1	5	-2,8621	-2,738	-8,36
		10	-2,5671	-1,438	-4,48
		1	-3,9638	-8,353	-47,44
Com constante e com tendência	1	5	-3,4126	-4,039	-17,83
		10	-3,1276	-2,418	-7,58

FONTE: Harris, R.; Sollis R. Applied time series modeling and forecasting. Chichester: Wiley & Sons, 2003. p. 275.

Quadro A.2

Valores críticos da superfície de resposta

TAMANHOS	n	COM CONS	TANTE E SEM 1	ΓENDÊNCIA	COM CONSTANTE E COM TENDÊNCIA			
Amostra		1%	5%	10%	1%	5%	10%	
<i>T</i> = 57	2	-4,09415	-3,44515	-3,11935	-4,60955	-3,95082	-3,62350	
<i>T</i> = 50	2	-4,12279	-3,46063	-3,12987	-4,65083	-3,97534	-3,64159	
<i>T</i> = 57	1	-3,62764	-2,91270	-2,59371	-4,12494	-3,48894	-3,17265	
<i>T</i> = 50	1	-3,56528	-2,92020	-2,59765	-4,14983	-3,50051	-3,17929	

Referências

BALASSA, B. **The theory of economic integration**. Homewood: Richard D. Irwin, 1963.

BHAGWATI, J. Regionalism and multilateralism: an overview. In: BHAGWATI, J. **Pravin Krishna and Arvind Panagariya**. Cambridge: MIT, 1999. p. 3-32.

BRASIL. Ministério do Desenvolvimento Indústria e Comércio Exterior — MDIC. Disponível em:

<www.midc.gov.br>. Acesso em: diversos dias em diversos meses em 2004 e 2005.

CHAVES NETO, L. G. L. **Criação e desvio de comércio no Mercosul:** uma aplicação do Índice de Vantagem Comparativa Revelada Modificada, 1999. Dissertação (Mestrado) — UFRGS. Faculdade de Ciências Econômicas, Curso de Pós-Graduação em Economia, Porto Alegre, 1999.

CLINE, W. R. El interes de America Latina en la integración económica. **Revista Integración Latinoamericana**, n. 62, Oct 1981.

CLINE, W. R. et al. **Trade negotiation in the Tokyo round:** a quantitative assessment. Washington: Brookings Institution, 1978.

- EL-AGRAA, Ali. The economics of the European Community. Hamel Hempstead: Harvester Wheatsheaf, 1994.
- EL-AGRAA, Ali. The theory and measurement of international economic integration. London: Macmillan, 1989.
- HARRIS, R.; Sollis R. **Applied time series modeling and forecasting**. Chichester: Wiley & Sons, 2003.
- IPEADATA. Instituto de Pesquisas Econômicas Aplicadas. Disponível em: www.ipeadata.gov.br. Acesso em: diversos dias em diversos meses em 2004 e 2005.
- JOHNSTON, J. y Dinardo, J. **Métodos de econometria**. Madrid: Vicens Vives, 2001.
- JOVANOVICH, M. N. International economic integration: limits and prospects. London: Routledge, 1998.
- LAIRD, S.; YEATS, A. **The Unctad trade policy simulation model:** a note on the methodology, data and uses. Switzerland: UNCTAD, 1997. (Discussion paper, n. 19).
- LEAMER, E. E.; STERN, R. M. Quantitative international economics. Boston: Allyn and Bacon, 1970.
- MARQUES, M. M. Integração econômica Brasil-Argentina: um estudo teórico e projeções dos efeitos potenciais sobre o fluxo de comércio bilateral. Dissertação (Mestrado) UFRGS, Curso de Economia, 1994.
- NONNEMBERG, M. J. B.; MENDONÇA, M. J. C. **Criação e desvio de comércio no Mercosul**: o caso dos produtos agrícolas. Rio de Janeiro: IPEA, 1999. (Texto para discussão, n. 631).
- OLIVIER, B. **Macroeconomía**. 6. ed. Rio de Janeiro: Campus, 1999.
- SAPIR, A.; BALDWIN, R. E. India and the Tokyo round. World Development, v.11, n. 7, p. 265-574, 1983.
- SERRA, J. **Reflections on regionalism**. Washington D. C.: Carnegie Endowment for International Peace, 1997.
- SUMMERS, Lawrence. **Regionalism and the world trading system:** policy implications of trade and currency zones. Kansas City: Federal Reserve Bank, 1991. p. 295-301.