Existe viabilidade econômica para o biodiesel no Brasil?

Juan Algorta Plá

Professor Adjunto na Faculdade de Ciências Econômicas da UFRGS.

Resumo

Novos combustíveis obtidos a partir de produtos agrícolas oferecem interessante alternativa em face da escassez de energia e da degradação ambiental. O desenvolvimento econômico exige a utilização de quantidades progressivamente maiores de combustíveis de qualidade superior. Como resposta, o Brasil desenvolveu a produção de etanol para substituir a gasolina. Atualmente, existe forte interesse no desenvolvimento de substitutos para o óleo diesel, cuja importação exige a utilização de grandes quantidades de divisas. A relação de preços do óleo diesel para o óleo de soja evoluiu em anos recentes, favorecendo a utilização do biodiesel. Por outra parte, o biodiesel é muito menos poluente que os combustíveis de origem fóssil. A produção de biodiesel origina importantes subprodutos (especialmente a glicerina), que são potencialmente interessantes para o desenvolvimento de outras cadeias industriais.

Palavras-chave

Biomassa; combustíveis alternativos; crise energética.

Abstract

New fuels derived from agricultural commodities offer an interesting alternative in face of energy shortages and environmental degradation. Economic development requires progressively larger use of high quality fuels. As a response, Brazil developed the production of ethanol as a substitute for gasoline. Presently, there is a strong interest in the development of substitutes for diesel oil, which demands the use of large amounts of foreign reserves. Price relation of diesel oil to soybeans evolved, in recent years, in a way progressively more favorable to the use of biodiesel. Furthermore, biodiesel is much more friendly to the environment than fossil fuels. Production of biodiesel generates important

subproducts (particularly, glycerine) that are potentially interesting for the development of other industrial chains.

Artigo recebido em 25 out. 2004.

Introdução

Os choques do petróleo, em meados da década de 70 e início da década de 80 do século XX, marcaram o fim da época dos combustíveis baratos: os preços dos derivados do petróleo sofreram fortes aumentos, interrompendo o desenvolvimento industrial de muitos países e causando o endividamento internacional de outros tantos. Como resposta, a humanidade dedicou-se a racionalizar o uso dos combustíveis, assim como à busca de fontes de energias alternativas, que permitissem relaxar a restrição imposta ao desenvolvimento.

Enquanto essas idéias amadureciam, consolidavam-se as tendências de encarecimento do petróleo e de seus derivados. As jazidas de petróleo de acesso mais fácil caminhavam para o esgotamento, enquanto as de acesso difícil, caso do petróleo de águas profundas, mereceram o interesse dos investidores e foram viabilizadas tecnicamente. Apesar de apresentarem interesse comercial, tais jazidas exigem custos de exploração mais elevados.

Grande interesse suscitou, desde o primeiro momento, o aproveitamento energético da biomassa, através da obtenção de combustíveis originados tanto no reino vegetal como no animal. Tais combustíveis utilizam-se da energia originada no sol e captada através da fotossíntese pelos vegetais (BR. MIC, 1985; Moraes, 1981).

Os modernos combustíveis derivados da biomassa são líquidos (álcool ou biodiesel), ou gasosos (biogás). O Brasil é pioneiro no aproveitamento do álcool (com o Proálcool, lançado em 1975), com o propósito de ser um combustível alternativo à gasolina. O biodiesel, ora cogitado, tem um papel importante no equacionamento das crises energéticas, uma vez que pode ser aproveitado em sua forma pura ou em mistura com o diesel de petróleo, para o transporte de carga ou de passageiros (Goldemberg, 1987).

O biodiesel é obtido pelo processo de transesterificação, em que o óleo vegetal reage com um álcool (etílico ou metílico), originando ésteres com

propriedades muito parecidas às do diesel tradicional, com capacidade de substituir o diesel de petróleo em proporção de um para um (Parente, 2003). O rendimento térmico é de 95% do rendimento do diesel tradicional, ou seja, o usuário praticamente não percebe diferença entre os dois combustíveis.

As vantagens ecológicas são o principal atrativo para o uso do biodiesel, já que ele é renovável e biodegradável, reduzindo sensivelmente as emissões de gases tóxicos na combustão, nos motores. Por outra parte, por ser o biodiesel produzido a partir de materiais originados na fotossíntese, sua combustão não contribui para elevar a concentração de CO2 atmosférico, contrariamente aos derivados do petróleo, que contribuem para o aquecimento global e para o efeito estufa. Outras vantagens estão no melhor desempenho dos motores, já que o biodiesel possui maior lubricidade que o combustível tradicional, prolongando a vida útil das máquinas.

A viabilidade do uso do biodiesel depende, no entanto, da sua competitividade econômica. Do ponto de vista do usuário, significa que o preço do biodiesel na bomba deve ser menor que o do diesel de petróleo. Enquanto o usuário privado não encontrar vantagem em usar o biodiesel, ele irá preferir o diesel de petróleo, ficando a difusão do novo combustível muito restrita. É importante ressaltar que o uso do biodiesel não requer modificações ou alterações nos motores atualmente utilizados.

A competitividade do biodiesel tende a aumentar, ao longo do tempo, na medida em que as quedas no preço da matéria-prima, o óleo vegetal e o álcool, venham a se consolidar frente à previsível elevação do preço do diesel de petróleo (Kerr, 1998). O barateamento do óleo vegetal explica-se em função da expansão da oferta, tendo em vista a melhora da tecnologia agrícola e as melhorias na eficiência das cadeias produtivas, que viabilizam a expansão da produção.

Produção de óleos vegetais no mundo

O encarecimento do petróleo deve-se ao esgotamento das jazidas mais abundantes e acessíveis. O preço internacional do óleo diesel, tradicionalmente, apresenta tendência a acompanhar as altas no preço do petróleo. Essas tendências, se mantidas, determinarão que, eventualmente, o preço do diesel tradicional venha a ficar acima do preço de combustíveis alternativos, como o biodiesel. As projeções de produção indicam a manutenção dessas tendências nas próximas décadas.

Produção total de oleaginosas no mundo — safras 2002/2003, 2003/2004 e 2004/2005

			(10 111)
PRODUTOS	2002/2003	2003/2004 (1)	2004/2005 (2)
Total	329,70	335,88	378,32
Soja	197,31	189,12	224,97
Algodão (caroço)	32,87	35,25	38,88
Amendoim	30,65	32,18	34,36
Girassol	23,86	26,46	25,70
Colza	32,5	39,27	40,43
Coco	5,29	5,47	5,62
Palmiste	7,76	8,36	8,63
Palma	27,64	29,05	29,84

FONTE: WORLD AGRICULTURAL PRODUCTION. USDA, July 2004.

(1) Dados preliminares. (2) Dados estimados.

Tabela 1

Muitos óleos vegetais foram testados na produção de biodiesel, desde a época da Segunda Guerra Mundial (Knothe, 2001). Atualmente, observa-se um mercado mundial saturado para alguns óleos vegetais, com preços apenas compensatórios em função dos subsídios concedidos pelos países industrializados. Tal é o caso do óleo de soja, o principal óleo de exportação brasileiro. O excesso de oferta é conseqüência da política de intervenção nos mercados, já que vários países concedem subsídios à produção agrícola, permitindo a coexistência de preços internos elevados com preços mundiais baixos.

Produção de plantas oleaginosas no Brasil

O Brasil apresenta condições naturais particularmente favoráveis para a produção de oleaginosas. Apesar dos protecionismos, essa produção registra forte expansão, já que ela é competitiva nos mercados mundiais, contribuindo para aproveitar os recursos produtivos do País. A evolução da área plantada com oleaginosas temporárias no Brasil vem aumentando persistentemente.

Tabela 2 Área plantada com oleaginosas temporárias no Brasil — 1990-2004

(milhões de hectares) **PRODUTOS** 1990-98 1999-00 2000-01 2001-02 2002-03 2003-04 Algodão 1.20 0.82 0.87 0.75 0.74 1.03 Amendoim (total) 0.09 0,10 0,10 0.09 80,0 0.09 Girassol 0.01 0.06 0.04 0.05 0.04 0.05 Mamona 0.14 0.20 0.16 0.13 0,13 0.13 Soja 11,27 13,51 13,97 16,33 18,47 21,12

FONTE: SÉRIE histórica de área plantada: consolidado 1990/2003. [S. I.]: CONAB, [s. d.].

A produção de oleaginosas vegetais, especialmente a de soja, encontra estímulo na produção de rações para a engorda de animais confinados, principalmente aves e suínos. O óleo vegetal resultante vem sendo aproveitado como alimento no Brasil ou então é exportado. Esse óleo poderia ser aproveitado como matéria-prima para a fabricação do biodiesel, evitando sua comercialização nos mercados mundiais.

Tabela 3

Estimativa da produção de grãos no Brasil — safras 2001/2002 e 2002/2003

(mil toneladas)

PRODUTOS	2001/2002	2002/2003
Algodão	1 245	1 351
Amendoim (total)	189	171
Girassol	71	72
Mamona	72	104
Soja	41 917	50 330

FONTE: ESTIMATIVAS de área plantada; levantamentos de safras agrícolas. CONAB. Disponível em: http://www.conab.gov.br

Produção de cana-de-açúcar no Brasil

A produção brasileira de cana-de-açúcar, matéria-prima para a fabricação de álcool, apresenta, também, tendência à expansão, observando-se rápido aumento da área plantada a partir de 2000.

Tabela 4

Produção de cana-de-açúcar no Brasil — 1998-04 (milhões de toneladas) **PRODUTO** 1998 1999 2000 2001 2002 2003 2004 Cana-de-açúcar 345 334 326 344 364 390 421

FONTE: PRODUÇÃO AGRÍCOLA MUNICIPAL. [Rio de Janeiro]: IBGE/SIDRA.

Avanços na tecnologia agrícola

As técnicas de produção agrícola evoluíram, tanto no Brasil quanto em outros países, no sentido de aumentar a eficiência e a competitividade. A indústria de máquinas e implementos agrícolas teve um período de rápido progresso ao longo da segunda metade do século XX; observa-se uma rápida adoção de cultivares adaptados às diversas regiões, assim como a utilização de outros insumos de alto rendimento, o que se traduz em competitividade mais elevada. O rendimento agrícola da soja, a principal oleaginosa, teve progresso apreciável, superando os 2.500 kg/ha a partir do ano 2000.

No entanto, a produção de oleaginosas temporárias no Brasil ficou muito dependente da soja. A expansão dessa cultura, em função de sua rentabilidade, tomou a terra de outras oleaginosas (principalmente girassol, amendoim, linho e mamona), o que não deixa de causar preocupação pelos inconvenientes associados à monocultura. O risco físico (quebra de safra), por ataques de pragas e doenças ou por clima adverso, ficou muito elevado, assim como o risco de mercado (aviltamento dos preços). A soja sofreu, na safra 2003/2004, o ataque da ferrugem asiática, uma nova doença fúngica que se alastrou rapidamente, exigindo tratamentos adicionais e elevando os custos de produção. Outras doenças conhecidas de tempos atrás, como a necrose da haste, assim como o ataque das lagartas, causam prejuízos maiores em função da monocultura, ao se expandirem facilmente para as culturas próximas.

Tabela 5

Evolução do rendimento agrícola da soja no Brasil — safras 1995/1996
a 2002/2003

SAFRAS	RENDIMENTO (kg/ha)
1995/1996	2 175
1996/1997	2 299
1997/1998	2 384
1998/1999	2 367
1999/2000	2 395
2000/2001	2 720
2001/2002	2 567
2002/2003	2 784

FONTE: Conab.

A técnica do plantio direto obrigou à adoção da prática de rotação de culturas, incluindo períodos de descanso (pasto), que deve ser ajustada a cada situação. A adoção do plantio direto generalizou-se rapidamente, a partir da primeira metade da década de 90, e possibilitou quedas importantes nos custos de produção. A produção de óleo poderia ser intensificada com rotações que incluíssem as culturas de girassol e canola. O girassol deve fazer parte de algumas rotações. Para a canola, a Embrapa recomenda a seqüência sojacanola-milho-trigo, que poderá constituir a base das futuras rotações, com adaptações para as diversas situações locais.

Novas regiões produtoras de oleaginosos

A soja teve sua expansão inicial na Região Sul, sendo que, atualmente, vem se expandindo nos Estados de Mato Grosso, Goiás, Maranhão e Bahia. A Região Sul ocupou o primeiro lugar na produção de soja do Brasil até 1997/1998, sendo que, a partir desse momento, a Centro Oeste se tornou a principal fonte de oleaginosos. Junto com a soja, observa-se a expansão da cultura do girassol.

Tabela 6

Produção de soja nas principais regiões de produção do Brasil — safras 2000/2001 a 2003/2004

(milhões de toneladas)

REGIÕES	2000/2001	2001/2002	2002/2003	2003/2004
Norte	0,2	0,2	0,6	0,9
Nordeste	2,0	2,1	2,5	3,5
Centro-Oeste	16,5	19,5	23,5	24,7
Sul	15,7	15,8	21,3	16,1
Sudeste	2,8	3,4	4,1	4,4
Brasil	37,2	41,1	52,0	49,7

FONTE: CONAB.

As Regiões Norte e Nordeste produzem importantes volumes de óleo de palma (dendê), que apresenta custos baixos e elevado rendimento de óleo (5.000 kg/ha). A palma vem apresentando rápida expansão no Norte, sendo que o Pará busca consolidar-se como pólo de produção: o Projeto Agropalma implantou 30 mil hectares de palma cultivada e a correspondente infra-estrutura de beneficiamento. É de se prever que, em poucos anos, a produção brasileira de óleo de palma terá um volume ainda maior que a do óleo de soja. Atualmente, está em construção a primeira fábrica de biodiesel a partir do óleo de palma (GM, 2004). A Bahia é o segundo maior produtor de óleo de dendê e poderá ainda expandir essa produção. Outras palmeiras nativas, como a macaúba, apresentam condições de adaptação a outras regiões.

Na Região Norte, por exemplo, existem 97 usinas de geração termelétrica que atualmente utilizam diesel de petróleo trazido de muito longe: essas usinas podiam estar aproveitando o óleo vegetal produzido localmente a partir de palmeiras. A geração de renda que o biodiesel oportunizaria a essas comunidades deveria contribuir, no futuro, para consolidar os processos de desenvolvimento regional, controlando os fluxos de migração rural, assim como expandindo a renda e ampliando os mercados nacionais.

A Região Centro-Oeste apresenta ainda insuficiente capacidade de beneficiamento dos grãos de oleaginosos. Uma grande proporção da soja produzida nessa região é exportada *in natura*. Já as Regiões Sul e Sudeste

apresentam sobredimensionamento do parque de beneficiamento, o que causou a ociosidade e a desativação de várias plantas.

A longo prazo, é de se esperar que aconteça uma expansão da capacidade de beneficiamento nas novas regiões, possibilitando o prolongamento da cadeia de transformação no Brasil, com a instalação de novas agroindústrias (avicultura e suinocultura).

Desenvolvimento da infra-estrutura de processamento

A infra-estrutura de transporte e de beneficiamento evoluiu em medida importante nos últimos anos. Novas ferrovias e hidrovias, assim como novos portos, favorecem a redução do custo de transporte, permitindo a abertura de extensas áreas, de elevada produtividade potencial, que permaneciam subutilizadas em função do alto custo de transporte. Um grande avanço na superação desses problemas foi obtido com a inauguração do corredor noroeste de exportação, a partir de meados da década de 90, que inclui a hidrovia Madeira—Amazonas, com a sua rede de rodovias e ferrovias, como descrevem Licio e Corbucci (1996).

A expansão das culturas do girassol e da soja, a partir de 1998, na Região Centro-Oeste pode ser vista como resultado das novas obras de infra-estrutura. A capitalização do setor permite reduzir os custos médios, elevando a competitividade do sistema e viabilizando a contribuição da agricultura para a produção de combustíveis alternativos.

Quando se comparam os dados de 1995 com os de 2002, observa-se que os estados que expandiram sua participação na capacidade de processamento são Mato Grosso, Bahia, São Paulo e Minas Gerais. Os três estados da Região Sul tiveram sua participação reduzida, especialmente o Rio Grande do Sul, o que constitui mais uma evidência do sobredimensionamento que havia alcançado o parque esmagador nesses estados.

O principal componente do custo do biodiesel é a matéria-prima. A elevação da eficiência agrícola deverá contribuir para manter esses custos baixos. Aperfeiçoamentos na logística e na produção de insumos, assim como a adequação das escalas de produção e o aproveitamento dos subprodutos, deverão possibilitar a otimização dos processos e a redução dos custos. Outros avanços no processo de produção deverão vir a reduzir o custo de produção do biodiesel, elevando a competitividade do produto.

Tabela 7

Capacidade de processamento da soja no Brasil — 2002

(t/dia)

ESTADOS	CAPACIDADE
Paraná	31 500
Rio Grande do Sul	19 000
São Paulo	14 700
Mato Grosso	10 820
Goiás	8 660
Mato Grosso do Sul	7 330
Minas Gerais	5 750
Bahia	5 200
Santa Catarina	4 130
Pernambuco	400
Piauí	260
Ceará	200
Brasil	107 950

FONTE: ABIOVE. Disponível em: http://www.abiove.com.br

Fábricas de biodiesel no Brasil

Novas obras de infra-estrutura estão em implantação e deverão viabilizar a ampliação da oferta de grãos e seus derivados nos próximos anos. Em 2004, existem, no Brasil, diversas iniciativas orientadas para a produção de biodiesel. Elas podem ser classificadas em função da matéria-prima utilizada, segundo o **Boletim Biodiesel-Brasil** de janeiro de 2004, em fábricas de biodiesel metílico ou etílico:

- biodiesel metílico Tecbio-Nutec-Ceará (óleode mamona e álcool metílico) e Coppe-UFRJ (óleo residual de frituras e álcool metílico);
- biodiesel etílico Ladetel-USP-Ribeirão Preto (óleo de soja e álcool etílico) e a Ecomat-Mato Grosso (óleo de soja e álcool etílico).

Além dessas, há outras iniciativas na área das cooperativas agropecuárias, como a Coamo, no Paraná, que utilizará óleo de soja, ou a Cotrimaio, no Rio Grande do Sul, que beneficiará óleo de girassol. Ainda há outras iniciativas, como a da Biobrás, em São Paulo, Minas Gerais, Paraná e Mato Grosso, que pretende aproveitar o óleo de soja e de girassol, a Agropalma, no Pará, que

beneficia óleo de dendê. A Petrobrás pretende iniciar a produção de biodiesel a partir de óleo de mamona, assim como a Brasil-Ecodiesel, no Maranhão, no Piauí e no Ceará, e a Vinema Multióleos Vegetais, no Rio Grande do Sul.

Há vários centros de pesquisa dedicados a assegurar a qualidade do produto, como o Cenbio, no Paraná, o Ladetel e o Pólo de Biocombustíveis de Piracicaba, em São Paulo, o Cenpes (Petrobrás, no Rio de Janeiro), o Cerbio-USP ou o Tecbio, no Ceará.

A capacidade de produção das quatro plantas já construídas é de 105 milhões de litros ao ano, o que equivale à produção dos Estados Unidos, segundo Giovane Kostetzer, Gerente Industrial da Ecomat (Mistura..., 2004).

Oferta e demanda de energia no mundo

A demanda por energia de um país está relacionada com o nível da atividade industrial. Justamente, a recente elevação dos preços do petróleo no mercado mundial (2004) encontra, como justificativa estrutural, a expansão da atividade econômica, especialmente nos EUA, na Europa e na China. A ampliação da União Européia, ao incluir países do Leste, permite antever uma forte expansão da demanda de combustíveis no momento em que esses países venham a se integrar efetivamente na economia européia, adotando os padrões ocidentais de consumo.

A oferta de petróleo apresenta-se bastante rígida, já que as jazidas mais importantes já mostram sinais de exaustão. As descobertas de novas jazidas ficaram bastante reduzidas na década de 90 (Kerr, 1998). Alguns fatores conjunturais contribuíram para a insuficiência da oferta, como a guerra no Oriente Médio, a instabilidade política na Venezuela, as greves na Nigéria ou na Noruega e as dificuldades da firma Yukos, na Rússia.

Oferta e demanda de energia no Brasil

A retomada do crescimento no Brasil deverá colocar importantes exigências sobre o abastecimento de energia. É necessário desenvolver novas fontes de energia para impedir que a elevação dos custos industriais possa colocar empecilhos ao desenvolvimento e causar pressões inflacionárias, assim como surtos de desemprego. O encarecimento dos combustíveis tiraria competitividade dos manufaturados brasileiros.

O consumo total de óleo diesel no Brasil, em 2002, foi de 39,162 milhões de m³, de acordo com informações do Ministério de Minas e Energia (BR. MNE, 2003), o que representou um aumento de 59,3% em relação a 1990. Nesse período, a produção foi insuficiente para atender ao consumo, devendo-se importar a diferença, que, em 2002, foi de 6,389 milhões de m³, representando 16% do consumo. A expansão da produção de diesel não acompanhou a expansão do consumo, em função de limitações na capacidade de refino, fato este que permite prever importações crescentes, caso não sejam abertas fontes alternativas de energia, já que, de acordo com o plano estratégico da Petrobrás, uma nova refinaria não estaria prevista para antes de 2011.

Tabela 8

Utilização de óleo diesel no Brasil — 2002

DISCRIMINAÇÃO	QUANTIDADE (milhões de m³)	VARIAÇÃO % (1)
Produção	32 752	35,6
Importação	6 389	95,6
Consumo total	39 162	59,3
Consumo de transporte	29 950	55,7

FONTE: BRASIL. Ministério de Minas e Energia. Balanço energético Nacional, 2003.

(1) Em relação a 1990.

A utilização de óleo de soja atualmente exportado (2,5 milhões de toneladas) como matéria-prima para a fabricação de biodiesel permitiria substituir parcela importante da importação de diesel, assim contribuindo para a poupança de divisas.

Tabela 9

Balanço de oferta e demanda para o complexo soja no Brasil — safra 2003/2004

(1000 t)

DISCRIMINAÇÃO	ESTOQUE INICIAL	PRODUÇÃO	IMPORTAÇÃO	SUPRIMENTO
Grão	3 973	49 712	1 000	54 686
Farelo	341	22 594	220	23 155
Óleo	370	5 434	100	5 904

DISCRIMINAÇÃO	CONSUMO	EXPORTAÇÃO	ESTOQUE FINAL
Grão	31 400	21 000	2 286
Farelo	8 400	14 500	256
Óleo	3 200	2 500	204

FONTE: BALANÇO de oferta e demanda. [S. I.]: CONAB, [s. d.].

Produção do biodiesel

A produção de biodiesel processa-se a partir do óleo vegetal degomado, que reage com o álcool em presença de um catalisador apropriado (hidróxido de sódio, de potássio, ou enzimas). A reação produz-se à pressão atmosférica e à temperatura de 60°C, com agitação mecânica. O tempo de reação é de 30 minutos a uma hora. Como subproduto, aparece a glicerina, que pode ser comercializada (Parente, 2003).

O processo de produção do biodiesel pode ser representado esquematicamente:

óleo vegetal + álcool + catalisador => biodiesel + glicerina

Para produzir uma tonelada de biodiesel, são necessários 965 litros de óleo de soja bruto degomado, 156 litros de álcool etílico e 15 quilogramas de catalisador (hidróxido de sódio).

Estimativa do custo de produção do biodiesel

O custo de produção do biodiesel está associado principalmente aos preços das matérias-primas: óleo vegetal e álcool. A glicerina é o subproduto com valor comercial obtido no processo de transesterificação.

Tabela 10

Preços dos insumos e dos subprodutos da fabricação do biodiesel no Brasil — 2002 e 2004

DISCRIMINAÇÃO	2002	2004
Óleo de soja-SP (m³)	1 333	1 813
Álcool etílico anidro (m³)	150	860
Glicerina (t)	330	***

FONTE: Para o ano 2002: FERRÉS, Diego. Palestra. In: SEMINÁRIO INTERNACIO-NAL SOBRE BIO-DIESEL (ABIOVE/TECPAR) 2003,

[Anais...]. Curitiba; [s. n.], 2003.

Para o ano 2004: GAZETA MERCANTIL. 23 set. 2004. (Cotações de Mercadorias).

Tabela 11

Preço médio dos principais combustíveis no Brasil — abr./04

(R\$/litro)

DISCRIMINAÇÃO	AO CONSUMIDOR	AO DISTRIBUIDOR
Álcool (R\$/I)	1 033	0,739
Diesel (R\$/I)	1,386	1,228
Gasolina (R\$/I)	1,974	1,711
Gás natural (R\$/m³)	1,073	0,718
GLP (R\$/13kg)	30,21	25,6

FONTE: ANP. Disponível em: http://www.anp.gov.br/preços/aberto.asp

NOTA: Os dados referem-se a levantamento da ANP de 25.04.04 a 01.05.04.

Ferrés (2003) estimou o custo de produção do biodiesel a partir do óleo de soja, nas regiões de São Paulo e Paraná, no ano 2002 (Tabela 12).

Tabela 12

Estimativa do custo de produção de uma tonelada do biodiesel etílico no Brasil — 2002 e 2004

COMPONENTES DO CUSTO		20	02	20	004 (1)
	QUANTIDADE Preço (US\$/t)	Custo (US\$)	Preço (US\$/t)	Custo (US\$)	
Insumos					
Óleo Soja	965kg	324,00	312,66	566,67	546,83
Etanol anidro	156kg	320,00	49,92	359,10	56,02
Catalisador	14,98kg	740	11,09		11,09
Custos industriais (2)	-		32,72		32,72
Subproduto (recuperação)					
Glicerina	104kg	330	-34,32	330	-34,32
Custo total					
US\$/t			372,07		612,34
US\$/I			0,324		0,533
R\$/t			1 116,00		1 837,02
R\$/I			0,971		1,598

FONTE: Para o ano 2002: FERRÉS, Diego. Palestra. In: SEMINÁRIO INTERNACIONAL SO-BRE BIODIESEL (ABIOVE/TECPAR) 2003, [Anais...]. Curitiba; [s. n.], 2003;

NOTA: Taxa de câmbio US\$ 1 = R\$ 3,00.

(1) Para o ano 2004, cálculo próprio. (2) Inclui vapor, energia elétrica, mão-de-obra direta, custo fixo de fabricação, custos administrativos e depreciação.

Seguindo a metodologia proposta por Ferrés, chega-se a uma estimativa do custo de produção do biodiesel etílico em São Paulo, para 2004. Observa-se que, entre os anos 2002 e 2004, houve uma elevação no custo de produção do biodiesel, de R\$ 0,97/l para R\$ 1,60/l (aumento de 65%), causada principalmente pelo aumento da cotação do óleo de soja (75%).

Nesse período (junho de 2002 a maio de 2004), de acordo com dados divulgados pela Agência Nacional do Petróleo (ANP), o preço do diesel aumentou de R\$ 0,65/l para R\$ 1,23/l (encarecimento de 89%). A elevação do preço do

diesel foi maior que o aumento do custo do biodiesel, o que melhora a competitividade deste último. Entre fevereiro e setembro de 2004, o petróleo teve seu preço elevado de US\$ 30 o barril para níveis próximos de US\$ 50 por barril, o que provocou novos aumentos para o usuário brasileiro, reforçando a idéia de que é necessário buscar fontes energéticas alternativas.

Evolução dos preços dos componentes do complexo soja

O preço do grão sofreu declínio a partir de 1980 (nos últimos anos assistiu-se a flutuações bastante marcadas), especialmente devido aos progressivos empecilhos colocados ao comércio pelos tradicionais compradores, os Estados Unidos e a Comunidade Européia, que subsidiam sua agricultura. O preço que recebem os agricultores daqueles países constitui um forte estímulo para produzir volumes excessivos, que contribuem para saturar os mercados mundiais, aviltando os preços. O preço do grão de soja no Brasil sofre expressivas influências do preço do grão nos mercados mundiais, já que a soja brasileira é tradicionalmente destinada à exportação.

Também se observam mudanças no comportamento dos tradicionais participantes no mercado mundial, como a China, que foi tradicional compradora de óleo de soja até meados da década de 90, quando entrou em funcionamento, no País, um novo parque industrial de extração de óleo, fazendo com o que se transformasse em grande importador de grão de soja, em prejuízo dos produtos beneficiados (óleo e farelo).

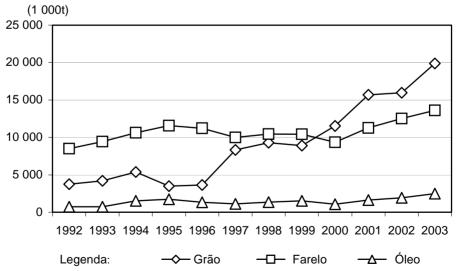

O Brasil adaptou-se a essa mudança, passando a exportar grandes quantidades de grão de soja, que seria esmagado no Exterior. Por esses anos, o Brasil inaugurou as novas vias de escoamento, viabilizando a produção de soja na Região Centro-Oeste. O aumento na exportação de grão foi conseqüência da ausência de indústrias de esmagamento em muitas regiões de produção de soja. Ao mesmo tempo, uma lei federal (a Lei Kandir, de 1997) retirou as vantagens impositivas da exportação do óleo e do farelo, aumentando a competitividade na exportação do grão. Assim, não é de surpreender que o grão seja, dentro do complexo soja, o segmento que apresentou taxas mais elevadas de crescimento da exportação.

Tabela 13 Exportações do complexo soja no Brasil — 1992-03

ANOS GRÃO	FARELO	ÓLEO	VARIAÇÃO PERCENTUAL (1)			
711100	(1 000t)	(1 000t)	(1 000t)	Grão	Farelo	Óleo
1992	3 740	8 501	718	0,0	0,0	0,0
1993	4 190	9 447	735	12,0	11,1	2,4
1994	5 367	10 618	1 517	43,5	24,9	111,3
1995	3 493	11 563	1 730	-6,6	36,0	140,9
1996	3 647	11 226	1 332	-2,5	32,1	85,5
1997	8 340	10 013	1 124	123,0	17,8	56,5
1998	9 288	10 447	1 359	148,3	22,9	89,3
1999	8 917	10 431	1 522	138,4	22,7	112,0
2000	11 517	9 364	1 073	207,9	10,2	49,4
2001	15 676	11 271	1 625	319,1	32,6	126,3
2002	15 970	12 517	1 934	327,0	47,2	169,4
2003	19 890	13 602	2 486	431,8	60,0	246,2

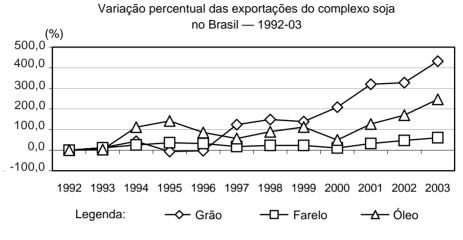

FONTE: ABIOVE. (1) Base 1992.

Gráfico 1 Exportações do complexo soja no Brasil — 1992-03

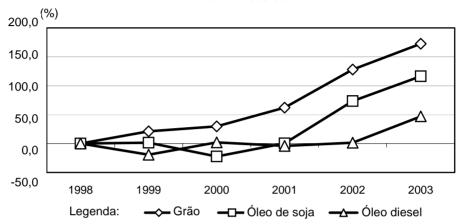
FONTE: Tabela 13.

Gráfico 2

FONTE: Tabela 13.

Tabela 14

Evolução dos preços do óleo bruto de soja e do diesel em Passo Fundo,
São Paulo e Brasil — 1998-03


ANOS	GRÃO EM PASSO FUNDO (R\$/saca)	ÓLEO BRUTO EM SÃO PAULO (R\$/t)	ÓLEO DIESEL NO BRASIL (US\$/m³)	VARIAÇÃO PERCENTUAL		
				Grão	Óleo Bruto	Óleo Diesel
1998	14,68	842,39	353,3	0,0	0,0	0,0
1999	17,78	853,92	285,2	21,1	1,4	-19,3
2000	19,02	654,98	360,0	29,6	-22,2	1,9
2001	23,82	844,35	339,1	62,3	0,2	-4,0
2002	33,48	1 463,13	358,1	128,1	73,7	1,4
2003	40,03	1 823,94	519,2	172,7	116,5	47,0

FONTE: ABIOVE. Cotações do Complexo Soja. Disponível em: http://www.abiove.com.br ANUÁRIO ESTATÍSTICO. [S. I.]: ANP, 2003.

Gráfico 3

Evolução dos preços do soja (grão e óleo) e do óleo diesel

no Brasil — 1998-03

FONTE: Tabela 14.

A capacidade de beneficiamento de oleaginosas deverá aumentar nas novas regiões de produção, contribuindo para maiores reduções do custo de transporte. Existe, assim, a expectativa de que a produção de óleo venha a se expandir no curto prazo. O óleo de soja é, atualmente, a matéria-prima abundante que permitiria iniciar a produção do biodiesel. Futuramente, deverão aparecer outros óleos que venham completar a oferta, principalmente os de palma, girassol, mamona e canola.

O farelo resultante do esmagamento encontra utilização na fabricação de rações para animais. A utilização energética do óleo aumentaria a oferta interna de farelo, reduzindo seu preço, melhorando a competitividade das operações de criação de aves e de porcos. Ao mesmo tempo, haveria elevação da demanda por outros componentes das rações, como o sorgo ou o milho.

Os preços do petróleo e seus derivados apresentaram tendência de aumento em função do progressivo esgotamento das jazidas mais facilmente acessíveis e da estrutura oligopólica do mercado frente às altas taxas de desenvolvimento industrial dos principais países consumidores.

A popularização do uso do biodiesel no Brasil permitiria poupar na importação de diesel. Pode-se, no entanto, argumentar que a exportação de óleo de soja seria reduzida pelo aproveitamento interno na produção de biodiesel. No entanto,

a vantagem estaria, justamente, em que o preço do diesel de petróleo apresenta tendência altista, enquanto os óleos vegetais deverão manter preços deprimidos, já que terão sua produção aumentada, em vista de que há recursos produtivos disponíveis ainda inaproveitados e de que tem havido aprimoramentos na eficiência das redes de transporte e no beneficiamento.

O volume atual da exportação de óleo de soja seria, por si só, suficiente para substituir o óleo diesel importado pelo Brasil. No entanto, o desenvolvimento da produção de vários tipos de oleaginosas deverá contribuir para elevar e estabilizar a oferta interna de matéria-prima para o biodiesel, contribuindo para o seu barateamento no Brasil.

Política de preços do óleo diesel

A utilização do diesel de petróleo como principal fonte de energia nas atividades econômicas justificou, no passado, um tratamento preferencial por parte do Governo Federal. O diesel vem pagando impostos com alíquotas baixas em relação às da gasolina, o que representa um subsídio para o combustível utilitário. Resulta, assim, difícil que os combustíveis alternativos possam competir com o diesel subsidiado.

O óleo de soja apresentou flutuações maiores que as do óleo diesel no período de 1998 a 2002. No final desse período, houve aumento importante do óleo de soja, chegando a 2003 com valor semelhante ao do óleo diesel. O forte aumento do preço do petróleo em 2004 sugere futuras elevações no preço interno do diesel.

Por outra parte, o Governo Federal busca evitar que as flutuações do mercado internacional tragam instabilidade para a economia do Brasil. Assim, os reajustes no preço do óleo diesel procuram distribuir no tempo os aumentos no preço do petróleo, ou as flutuações cambiais, ao longo de períodos relativamente prolongados.

No entanto, a participação nos mercados mundiais obriga o Brasil a acompanhar as flutuações dos preços. Frente a essa realidade, o óleo de soja sofre os impactos das flutuações do mercado internacional e da taxa de câmbio. O aproveitamento do óleo de soja como fonte de energia estaria a exigir uma política de estabilização equivalente à do óleo diesel de petróleo, para garantir, de forma permanente, a competitividade do novo combustível.

Aspectos ecológicos

A utilização do biodiesel deverá contribuir para reduzir a contaminação do ar, especialmente nas grandes metrópoles, assim como para controlar o efeito estufa, causador de graves alterações climáticas. Constitui, por outra parte, uma forma de obter um combustível renovável (Goldemberg, 1987).

No entanto, o programa de óleos vegetais para fins energéticos deverá enfatizar o controle da erosão do solo, de modo a manter a eficiência agrícola do processo de produção. Nesse sentido, é importante manter uma adequada diversificação das culturas oleaginosas. As modernas técnicas de plantio direto, incluindo rotações de culturas, deverão ser aperfeiçoadas para elevar os rendimentos agrícolas sem prejudicar a fertilidade natural do solo.

Além dos aspectos anteriormente citados, também a poluição por resíduos dos óleos de frituras utilizados na preparação de refeições deverá ser amenizada, na medida em que esses óleos sejam dedicados à fabricação de biodiesel.

Viabilidade econômica do biodiesel

A produção de óleos vegetais encontra-se em expansão no mundo, o que permite supor que não haverá, no curto prazo, dificuldades de abastecimento. Os mercados de óleos estão saturados, e seu preço apresenta tendência à queda. Por sua vez, o processo industrial de fabricação do biodiesel deverá incorporar progressivos aperfeiçoamentos, que deverão reduzir o seu custo, e a melhoria na logística do biodiesel deverá oportunizar barateamentos adicionais.

Além disso, a produção de biodiesel deverá gerar atividades econômicas nas localidades do Interior, melhorando os níveis de vida e reduzindo a migração para as cidades. Existe, assim, a expectativa de que a competitividade econômica do biodiesel venha a aumentar.

Conclusão

O biodiesel já é — ou pode chegar a ser em breve — competitivo com o óleo diesel, apesar dos subsídios que este vem recebendo. O Brasil apresenta vantagens naturais importantes para a produção de combustíveis a partir da biomassa

A matriz energética do Brasil deve tornar-se, no futuro, mais rica e complexa, para incluir esses novos combustíveis derivados da biomassa. Na atualidade, a principal oleaginosa brasileira é a soja, que apresenta excedentes exportáveis de grande importância. No entanto, diversas culturas deverão adquirir expressão como fornecedoras de óleos vegetais para fins energéticos, principalmente o girassol, a colza, a mamona e a palma, permitindo o aproveitamento das vocações de cada região, em função das características ecológicas, sociais e econômicas locais.

A utilização do biodiesel deverá permitir o melhoramento das condições do ar nas grandes cidades, reduzindo a chuva ácida e a emissão de partículas patogênicas originadas na combustão do diesel de petróleo. Por outra parte, deverá contribuir para o controle do efeito estufa.

O biodiesel deverá trazer, ainda, importantes benefícios econômicos para as comunidades das regiões isoladas do Interior, criando empregos e renda. A maioria desses empregos seria de mão-de-obra não qualificada, o que ajudaria a resolver o problema do desemprego, especialmente entre as classes baixas rurais.

No entanto, a utilização dos óleos vegetais como fonte de energia requer uma estrutura institucional e políticas econômicas adequadas, que ainda devem ser desenvolvidas. O biodiesel deverá completar a matriz energética brasileira, sem, contudo, erradicar totalmente o uso dos derivados do petróleo.

Referências

ABIOVE. Noticiário Mensal. Disponível em: http://www.abiove.com.br

ANUÁRIO BRASILEIRO DA SOJA (vários anos). Santa Cruz do Sul/RS: Grupo Gazeta.

ANUÁRIO ESTATÍSTICO. [S. I.]: ANP, 2003.

BOLETIM ELETRÔNICO, [S. I.]: Clipping Biodiesel Brasil, 2004. Mensagem recebida por noticiasbiodieselbrasil@biodieselbrasil.com.br

BRASIL. Ministério da Indústria e do Comércio. **Produção de combustíveis líquidos a partir de óleos vegetais**. Brasília, DF: Secretaria de Tecnologia Industrial; Coordenadoria de Informações Tecnológicas, 1985. (Série Documentos, n. 16).

BRASIL. Ministério de Minas e Energia. Balanço energético nacional, 2003.

CONGRESSO INTERNACIONAL DE BIODIESEL: dos Combustíveis Fósseis aos Biocombustíveis (USP), abril 2003, Ribeirão Preto.

EMBRAPA. Manual para cultivo de canola. Passo Fundo: CNPT, 2003.

ESTIMATIVAS de área plantada; levantamentos de safras agrícolas. CONAB. Disponível em: http://www.conab.gov.br

FERRÉS, Diego. Palestra. In: SEMINÁRIO INTERNACIONAL SOBRE BIODIESEL (ABIOVE/TECPAR) 2003, [Anais...]. Curitiba; [s. n.], 2003.

GAZETA MERCANTIL. [São Paulo], 23 set. 2004. (Cotações de Mercadorias).

GOLDEMBERG, José. **Energia para o desenvolvimento**. [S. I.]: Ed. T. A. Queiroz, SP, 1987.

IBGE. **Censo Agropecuário**, 1996. Disponível em: http://www.sidra.ibge.gov.br JORNADA SOBRE BIODIESEL (ABIOVE/AEA) São Paulo, dez. 2001.

KERR, R. The next oil crisis. **Science**, [S. l.: s. n.], n. 281, 1998.

KNOTHE, G. Historical perspectives on vegetable oil-based diesel fuels. **Inform**, AOCS, Nov. 2001.

LEVANTAMENTO SISTEMÁTICO DA PRODUÇÃO AGRÍCOLA. [Rio de Janeiro]: IBGE. Disponível em: http://www.ibge.gov.br

LICIO, Antonio; CORBUCCI, Regina. A agricultura e os corredores de transporte multimodais. **Revista de Economia Agrícola**, Brasília: MAPA, v. 5, n. 2, p. 22-36, 1996.

MISTURA de biodiesel vale a partir de 30 de novembro de 2004. ESTADO DO PARANÁ. 10 out. 2004.

MORAES, J. L. **Manual dos óleos vegetais e suas possibilidades energéticas**. [S. I.]: CNI-DAMPI, 1981.

PARENTE, Expedito. **Biodiesel**: uma aventura tecnológica num país engraçado. Fortaleza, CE: TECBIO, 2003.

PLÁ, J. Perspectivas do biodiesel no Brasil. **Indicadores Econômicos FEE**. v. 30, n. 2, 2002.

SEMINÁRIO INTERNACIONAL SOBRE BIODIESEL (ABIOVE/TECPAR) out. 2002, [Anais...]. Curitiba; [s. n.], 2002.

WORLD AGRICULTURAL PRODUCTION. USDA. Disponível em: http://www.usda.gov